FHB Logo Facebook LinkedIn Email Pinterest Twitter X Instagram Tiktok YouTube Plus Icon Close Icon Navigation Search Icon Navigation Search Icon Arrow Down Icon Video Guide Icon Article Guide Icon Modal Close Icon Guide Search Icon Skip to content
Subscribe
Log In
  • How-To
  • Design
  • Tools & Materials
  • Restoration
  • Videos
  • Blogs
  • Forum
  • Magazine
  • Members
  • FHB House
  • Podcast
Log In

Fine Homebuilding Project Guides

Energy Retrofit

Guide Home
  • Energy Efficiency
  • HVAC Systems and Water Heaters
  • Air-Sealing and Insulation
  • Solar Power and Electrification
  • Deep Energy Retrofits
  • Energy-Efficient Houses
HOUSE+

Choosing Between HRVs and ERVs

Understand which type of whole-house heat-recovery ventilation system will create an efficient and healthy home, depending on certain environmental factors.

By Scott Gibson Issue 310 - October 2022

Synopsis: When it comes the choice between heat-recovery ventilators (HRVs) and energy-recovery ventilators (ERVs), there are a multitude of factors to consider, including the climate you’re building in, the size and tightness of the home, and the number of occupants and their living habits. This comprehensive article gives a rundown on the differences between HRVs and ERVs and which is more applicable to meet your home’s demands.


Jack Hébert, founder of the Cold Climate Housing Research Center, is credited with a phrase that’s becoming increasingly familiar to high-performance builders: “Build tight, ventilate right.” In short, as houses get tighter and better insulated, the need for well-designed mechanical ventilation gets more important. At its simplest, this means using kitchen and bathroom fans to remove moist or particulate-laden air. In this exhaust-only approach, outside air finds its way into the building via gaps in the building enclosure. Supply-only ventilation works the other way: Fans bring fresh air into the house, but there’s no dedicated path for stale indoor air to leave. Both of these approaches are economical if you’re concerned about up-front cost, but they lack the long-term performance and efficiency of a balanced ventilation system that includes an HRV or ERV.

A balanced ventilation system intelligently combines exhaust- and supply-air ventilation to maintain air pressure without drastically increasing overall energy consumption. That energy consumption includes both electricity to run the HRV or ERV, as well as energy required to condition supply air. A heat-recovery ventilator, or HRV, and energy-recovery ventilator, or ERV, are similar in that they have a core through which both incoming and outgoing air travel to transfer heat energy and, in the case of ERVs, moisture.

Deciding which system is right for your project depends on several factors, including the climate you’re building in, the size and tightness of the home, and the number of occupants and their living habits. Coupled with an efficient distribution system, balanced ventilation will improve the comfort and indoor-air quality of your home and minimize the energy expenditure to heat and cool it. 

Unfortunately, there is no one-size-fits-all solution to mechanical ventilation, so we contacted leading ventilation and indoor-air-­quality experts to help you understand HRV- and ERV-based ventilation systems, as well as help narrow down options for an HRV or ERV system that will meet your home’s unique demands. 

How much air is needed?

Determining how much fresh air a ventilation system should be capable of providing is dependent on many factors and can give even experts a headache. The International Residential Code (IRC) requires buildings with air-leakage rates of less than 5 ACH50 to have whole-house mechanical ventilation, but standards on exactly how much ventilation is needed are evolving. 

The benchmark for mechanical ventilation is ASHRAE Standard 62.2. In pre-2013 versions, it required supply air of 0.01 cfm (cubic ft. per minute) of ventilation air per sq. ft. plus 7.5 cfm per occupant; on the exhaust side, it called for 25 cfm of continuous ventilation in kitchens (100 cfm supplied intermittently), and 20 cfm in the bathroom for fans run continuously (50 cfm for intermittent operation). In versions of 62.2 published after 2013, supply-air requirements tripled to 0.03 cfm of ventilation air per sq. ft. (plus 7.5 cfm per occupant), while exhaust air minimums followed a new schedule in the kitchen, depending on whether a range hood was used. Passive House requirements are even more demanding.

Building scientists are divided on whether the changes were a good idea. Some experts argue that even the old requirements were too high because they tended to result in high indoor moisture in humid climates, which is a big concern. 

“It depends a lot on what’s going on in that building and what the occupants are doing,” said Cramer Silkworth of Baukraft Engineering. “It’s hard to nail down any one specific formula for maintaining good air quality. More fresh air is better, especially now with all of the Covid concerns, but there’s the energy expense and especially humidity control you have to add to those systems. So, until we have free dehumidification and heating and cooling and filtration on all these systems it’s kind of a battle between those two factors—you need enough but not too much, and it’s really hard to say what those levels are.”

The code-required ventilation rates in the jurisdiction you’re building in are simply the minimum requirements for ventilation, but an HRV or ERV should be considered as part of an entire HVAC system, including dehumidification. 

Most often, an ERV is the right choice

An ERV has an absorbent core that transfers 40% to 60% of the moisture from the incoming air to the outgoing air stream or vice versa depending on the season.

When deciding between an ERV or an HRV for whole-house ventilation, an ERV is the best option in most cases and climates across North America. However, several factors play a role in the decision, including the rest of the home’s mechanical systems. The primary consideration should be the moisture-control needs of the home, especially when you want to manage some degree of relative humidity. In both winter and summer, ERVs generally do a better job of keeping indoor humidity levels comfortable because of the latent heat recovery that takes place.

That being said, the more people in your home, the more moisture they generate. An ERV is better at managing moisture when the goal isn’t simply eliminating excess humidity. Oftentimes a central or standalone dehumidifier is needed during humid summer months. Likewise, in an airtight home, humidity and moisture is often a more pressing concern than heat loss, and an ERV is the right choice when you want to address both.

How HRVs and ERVs work

HRVs and ERVs both exploit the second law of thermodynamics, in that heat transfer occurs spontaneously from higher- to lower-­temperature bodies, but never spontaneously in the reverse direction. An HRV or ERV is a metal box that contains fans (either single, multi­speed, or variable speed) and four ports. Inside is a heat-exchanger core that looks like stacks of corrugated material that enables heat transfer and allows incoming and outgoing air to cross paths without actually mixing (so that any stale or particulate-filled air won’t be pulled back into the home). A less common design swaps the heat-exchanger core for a heat pump, but the function (transferring heat energy between separate air streams) is the same.

During the heating season, an HRV transfers some of the heat in the stream of exhaust air to the incoming air. This takes place in the HRV’s heat exchanger. Thus, your furnace or heat pump doesn’t have to work as hard to warm up the air to the inside temperature. It’s  not a one-to-one energy transfer, but it’s more efficient (even though you’re using electricity to power the HRV) than just bringing in cold air. The heat transfer is reversed during cooling season. This energy transfer is what engineers call “sensible heat recovery.” 

ERVs get more complicated. In an ERV, there is an exchange of sensible heat but also an exchange of moisture. Engineers refer to this moisture exchange as “latent heat recovery.” Instead of a vapor-­impermeable aluminum or polypropylene heat exchanger, an ERV typically has a core made of a vapor-permeable polymer. The polymer core permits the passage of some moisture between exhaust and makeup air, although it’s still air-impregnable so the air streams don’t mix.

To meet the ASHRAE ventilation requirements mentioned earlier, a three-bedroom, 2000-sq.-ft. house would typically need a system rated at 90 to 100 cfm, according to Brian Ault, a senior design engineer with Positive Energy, a mechanical systems consulting firm. Sensible heat recovery in an HRV averages about 70% (but can be as high as 95%). In an ERV, a certain amount of sensible heat recovery is taking place (but somewhat less recovery than an HRV, though the exact number will vary by manufacturer and model) and in addition the “latent heat” recovery—which is a measure of moisture transfer—is usually between 40% and 60%, so about half the moisture difference in the two airstreams will be transferred through the core.

HRV and ERV systems should be tested and adjusted after they have been installed to make sure they’re performing as designed, and filters should be changed on a regular basis. ERV cores eventually get clogged with oil, skin cells, hair, and dust and should be replaced every four to 12 years. A less complicated HRV core should last for a couple of decades without any major maintenance. When it gets dusty, a homeowner can just clean it off with compressed air. Enrico Bonilauri of EMU Systems, a Passive House consulting firm, also mentions that the only moving parts in an HRV or ERV are the fans, so there’s not much to wear out. Cores can last for decades provided filters are changed on schedule.

When should you consider an HRV?

Fresh air is drawn from outside

An HRV can be a good option for homes in mixed climates or with cold winters, but there are always other factors to consider. In addition to where you live, it’s also about how you live. An HRV will be most effective at removing excess indoor humidity efficiently in cold winter climates, because as an HRV pulls stale air out of the home, humidity within that air is removed too.

Excess indoor humidity, especially in winter months, may be the result of the number of people and types of activities taking place within the home. Large, active families can produce a lot of moisture as a result of exercising, cooking, and showering. Or excess humidity might relate to the fact that modern homes tend to be more airtight and therefore hold moisture in. Older homes are usually more leaky with a tendency to dry faster, which means an ERV is likely a better option for managing indoor humidity levels.

More and more, ERVs fit the bill

The decision to choose an HRV or ERV is largely driven by where you live. Historically, HRVs were more common in houses in colder climates because the chief concern was the amount of heat energy that could be saved, and humidity was seen as a secondary problem. The most efficient units on the market capture more than 90% of the heat in the outgoing air stream and transfer it to incoming air—in really cold environments, that’s a big plus. ERVs were typically specified in places with hot, humid summers because an ERV brings in less moisture from the outdoors than an HRV. 

“It is an appreciable amount of latent energy when you have a legitimate difference between your indoor moisture levels and your outdoor moisture levels,” Ault said. “Up north, it’s dry as a bone outside for four or five months of the year in the winter. In the summer, sometimes it’s about the same as inside the house. Farther south, that’s flipped.”

In humid parts of the country—the southeast U.S.—running an ERV during the summer does not lower indoor humidity. An ERV will actually increase indoor relative humidity because the outdoor air doesn’t shed all of its moisture on its way indoors. But the problem would be worse if an HRV were installed because there is zero moisture transfer in an HRV. Even though moisture levels will go up when running the ERV, stale indoor air is being exhausted and fresh outdoor air is being introduced. In a well-designed HVAC system, a dehumidifier or an air conditioner can deal with excess humidity.

Clearly, there is nothing simple about this debate. A small house with very little air leakage and lots of inhabitants might have high indoor humidity that can be a problem in the winter. An HRV can make it more comfortable. But a large, leaky house in a cold climate may already be very dry during the winter, so an ERV will help prevent it from becoming too dry by retaining what little moisture is in the air.

Additionally, ERVs have been more expensive than HRVs in the past, but the gap in price between the two is narrowing, and designers are recognizing the importance of capturing humidity in the winter, giving ERVs a lift even in areas where HRVs once ruled. Installation of an HRV is also complicated by the fact that it must be oriented in a specific way so that the condensate drains work properly. Alternatively, an ERV can be installed at any orientation. And, in a cold climate, HRVs are more likely to freeze up, requiring a defrost cycle.

When energy usage is a primary concern in choosing between an HRV and ERV, a home’s other mechanical HVAC systems need to be assessed. “An HRV is used to save energy,” shares Nick Agopian, vice president for sales and marketing at RenewAire. “But an ERV is also used to downsize the capital costs of [air conditioning or dehumidification] equipment. If the humidity stays the same and you still have to dehumidify, you can’t downsize [your heating and cooling equipment]. All you’re doing is saving a portion of that energy, but your capital equipment still needs to be the same size and it has to work hard to dehumidify that air.”

Heat transfer in an ERV typically isn’t quite as good as it is with an HRV, he says. And as the latent energy performance of an ERV is increased by making the polymer core thicker, the thermal performance goes down. More and more, though, the tide seems to be turning toward ERVs in most instances.

“Deciding between an ERV and an HRV should land on ERV most of the time,” says Allison Bailes III, a Georgia-based energy consultant. “In a warm, humid climate, an ERV brings in less outdoor humidity than an HRV. (An ERV isn’t a dehumidifier. It does still add to the latent load in the house.) In a hot, dry climate, an HRV will make your already dry air even drier. In a cold climate, bringing in outdoor air without moisture exchange can result in extremely low humidity in winter. Only in mild climates like the West Coast of North America do HRVs make sense … sometimes.”

Bailes shared that occupancy is another factor to consider. “The higher the density of people in a space, the more you might need to lower indoor humidity and dry out the air with an HRV,” he said. “A small, airtight apartment or condo with two or three people in it, for example, may be too humid indoors with an ERV.

“Another reason people choose HRVs is they’re more efficient at transferring heat than are ERVs. What good is it to have high-­efficiency ventilation, though, if you end up growing mold? The primary way to choose between an ERV and an HRV is to understand the moisture-control needs of the space being ventilated.”

Standalone ducting stands out

There are two primary options for ducting an ERV or HRV. You can use existing ductwork to integrate into the forced-air system. But if you don’t have existing ductwork or your main goal is efficiency, you can install dedicated ducting specifically for the HRV or ERV unit.

While both systems work to exhaust stale air and supply fresh air, a dedicated ducting system is considered the best option for overall balanced ventilation with minimal energy usage. Tying into an existing system requires interlock wiring between the HRV or ERV and the furnace to keep the furnace fan running to distribute air throughout the home. The result sacrifices efficiency for whole-house ventilation. An alternative to interlock wiring is a motorized damper that closes when the furnace fan shuts off, bypassing the furnace and directing fresh air from the HRV or ERV into the home through the return-air vent. This is a more energy-efficient approach, but fresh air is not being distributed throughout the home while the furnace is bypassed, making the standalone-ducting option ideal.

Dedicated system

dedicated system

Forced-air system

Illustration of a Forced-air system

What you need to know about distribution

Air-distribution systems for HRVs and ERVs can vary. At one end of the scale are systems that include dedicated supply and exhaust ducts to key rooms in the house, separate from any other HVAC ducting. That ensures a constant and well-distributed source of clean outdoor air but at a relatively high material and installation cost. Other systems are less complex and may even use existing HVAC ducting to distribute outdoor air. Ductless HRVs or ERVs are another option, especially useful if you don’t have any existing ductwork. They’re sold in pairs that communicate and switch between bringing in outdoor air or exhausting indoor air, and installation is usually a single hole for each unit through an exterior wall. They don’t require interior duct­work, though you’ll need to run wiring for electricity to power the units. You’ll also need multiple units for a whole house, as they’re typically sized to provide ventilation for smaller areas.

Costs for installing a ducted system in a typical 2000-sq.-ft. house range from about $3000 for a basic system using existing ductwork to nearly $10,000 for a high-end system with more complex dedicated ducting. HRVs range from $600 to $1800 for the unit, while ERV units range from $800 to $2000 or more.

The simplest way to distribute air through a house is with a single-­point system, with one supply duct and one exhaust duct. For example, you can exhaust stale indoor air from a hallway and supply fresh air to the primary bedroom. When there is no central air handler available, this type of system is inexpensive, but it doesn’t ensure ventilated air will be distributed evenly around the house. Spot ventilation would still be required in bathrooms and kitchens.

In a multipoint system, fresh air is distributed to bedrooms and main living areas while stale air is drawn from hallways, the kitchen (to avoid fouling the filter and heat exchanger with grease, exhausting the cooking area with an HRV or ERV is not recommended), and bathrooms. These fully ducted systems represent best practice according to Building Science Corp. They are the most efficient but also the most expensive. These systems are also effective where there is no central air handler available.

An air handler can be part of the distribution system. Fresh air is routed through the HRV or ERV and into the supply side of the air handler. Returns to the air handler go through a filter, and other ducts pull stale air from indoors and direct it to the HRV or ERV. These systems achieve whole-house distribution and come with moderate cost. A variation is to draw the exhaust air for the HRV or ERV directly from the air handler’s return trunk while supplying all fresh air through the air handler’s ducts. 

Ultimately, it’s a question of budget for systems that support overall indoor-air quality. When spec’ing a new home or remodel, many homeowners budget for luxury appliances and the kitchen to match, but proper ventilation often takes a back seat. Awareness about indoor-air quality is increasing as the result of the ongoing pandemic, and investment in systems to positively impact air quality within the home is growing, though slowly. Agopian calls ventilation “preventive medicine” and makes it seem like an easy decision and investment for something that can have a huge impact on overall comfort and health.

Finding the right mechanicals

The Home Ventilating Institute, an industry trade group, maintains an extensive list of manufacturers that offer ERVs or HRVs (or both) to buyers in the U.S. These include familiar ventilation brands such as Broan, Fantech, Panasonic, and RenewAire, along with companies that may be a little less familiar to U.S. homeowners, such as Zehnder, a Swiss company that makes the high-end ComfoAir systems. 

Finding the right mechanicals

Fantech VHR 70R ES HRV 70 cfm $690
Fantech VHR 70R ES, HRV, 70 cfm, $690
RenewAire EV Premium S ERV 119 cfm $1200
RenewAire EV Premium S, ERV, 119 cfm, $1200

Zehnder ComfoAir 350 ERV 218 cfm $2900
Zehnder ComfoAir 350, ERV, 218 cfm, $2900

Scott Gibson is a contributing writer for Fine Homebuilding and GreenBuildingAdvisor.com. Drawings by Christopher Mills.

A version of this article originally appeared in Green Building Advisor

From Fine Homebuilding #310


RELATED STORIES

  • Breathe Easy With Balanced Ventilation
  • Ducting HRVs and ERVs
  • Are There Reasons to Make Homes a ‘Little But Leaky’?

Fine Homebuilding Recommended Products

Fine Homebuilding receives a commission for items purchased through links on this site, including Amazon Associates and other affiliate advertising programs.

Nitrile Work Gloves

Do yourself a favor and protect your hands while you work. These lightweight, breathable work gloves will keep your hands safe while cutting and fitting.
Buy at Amazon

Caulking Gun

It's important for any insulator to have a good caulking gun for air sealing or adhesives, and this one features a revolving frame that makes orienting the tip a breeze.
Buy at Amazon

Foam Gun

We like using a professional foam-dispensing gun as opposed to straw cans because it allows you to easily control bead size and reuse the can.
Buy at Amazon

Sign up for eletters today and get the latest how-to from Fine Homebuilding, plus special offers.

Signing you up...

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
See all newsletters
See all newsletters
Previous: The Diagnostic Benefits of Smart Thermostats Next: Principles of Residential Ventilation: ERVs and IAQ

Guide

Energy Retrofit

Chapter

HVAC Systems and Water Heaters

View Comments

  1. Othro | Jan 17, 2023 03:01pm | #1

    This is a great read! I am remodeling (slowly) my house in the PNW and ventilation/filtration is on my list of "down the road" but if there are more days of wildfire smoke this summer it might push the timeline.

    My 1300 sq. ft. cape cod right now hovers around 60% indoor humidity with the forced air going, can quickly climb to 80% without the heat on during the shoulder seasons. Summers are dryer here with outdoor humidity in the 60% range. It seems like a HRV is a better choice for the winters here but will summers get super dry indoors?

    Crawlspace and attic both need insulation/sealing so maybe that will bring down my indoor humidity and then a ERV would be better?

Log in or create an account to post a comment.

Sign up Log in

Become a member and get full access to FineHomebuilding.com

Energy Retrofit

Energy Retrofit

Trusted, comprehensive guidance from the pros for making energy-efficient updates to any home

View Project Guide

View All Project Guides »

Become a member and get unlimited site access, including the Energy Retrofit Project Guide.

Start Free Trial

Energy Efficiency
  • Understanding Energy Efficiency
  • Net-Zero & Passive Houses
HVAC Systems and Water Heaters
  • Heating and Cooling Systems
  • Ventilation and Dehumidification for Good Air Quality
  • Water Heaters
  • Heat Pump HVAC
  • Minisplits
Air-Sealing and Insulation
  • Air-Sealing
  • Insulation
Solar Power and Electrification
  • Solar Power
  • Energy Storage Options
  • All-Electric Homes
Deep Energy Retrofits
  • Deep Energy Retrofits 101
  • Featured Deep Energy Retrofits
Energy-Efficient Houses
  • Energy-Efficient Houses

Fine Home Building

Newsletter Sign-up

  • Fine Homebuilding

    Home building tips, offers, and expert advice in your inbox.

  • Green Building Advisor

    Building science and energy efficiency advice, plus special offers, in your inbox.

  • Old House Journal

    Repair, renovation, and restoration tips, plus special offers, in your inbox.

Signing you up...

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
See all newsletters

Follow

  • Fine Homebuilding

    Dig into cutting-edge approaches and decades of proven solutions with total access to our experts and tradespeople.

    Start Free Trial Now
    • Facebook
    • Instagram
    • X
    • LinkedIn
  • GBA Prime

    Get instant access to the latest developments in green building, research, and reports from the field.

    Start Free Trial Now
    • Facebook
    • YouTube
  • Old House Journal

    Learn how to restore, repair, update, and decorate your home.

    Subscribe Now
    • Facebook
    • Instagram
    • X
  • Fine Homebuilding

    Dig into cutting-edge approaches and decades of proven solutions with total access to our experts and tradespeople.

    Start Free Trial Now
    • Facebook
    • Instagram
    • X
    • LinkedIn
  • GBA Prime

    Get instant access to the latest developments in green building, research, and reports from the field.

    Start Free Trial Now
    • Facebook
    • YouTube
  • Old House Journal

    Learn how to restore, repair, update, and decorate your home.

    Subscribe Now
    • Facebook
    • Instagram
    • X

Membership & Magazine

  • Online Archive
  • Start Free Trial
  • Magazine Subscription
  • Magazine Renewal
  • Gift a Subscription
  • Customer Support
  • Privacy Preferences
  • About
  • Contact
  • Advertise
  • Careers
  • Terms of Use
  • Site Map
  • Do not sell or share my information
  • Privacy Policy
  • Accessibility
  • California Privacy Rights

© 2025 Active Interest Media. All rights reserved.

Fine Homebuilding receives a commission for items purchased through links on this site, including Amazon Associates and other affiliate advertising programs.

X
X
This is a dialog window which overlays the main content of the page. The modal window is a 'site map' of the most critical areas of the site. Pressing the Escape (ESC) button will close the modal and bring you back to where you were on the page.

Main Menu

  • How-To
  • Design
  • Tools & Materials
  • Video
  • Blogs
  • Forum
  • Project Guides
  • Reader Projects
  • Magazine
  • Members
  • FHB House

Podcasts

  • FHB Podcast
  • ProTalk

Webinars

  • Upcoming and On-Demand

Podcasts

  • FHB Podcast
  • ProTalk

Webinars

  • Upcoming and On-Demand

Popular Topics

  • Kitchens
  • Business
  • Bedrooms
  • Roofs
  • Architecture and Design
  • Green Building
  • Decks
  • Framing
  • Safety
  • Remodeling
  • Bathrooms
  • Windows
  • Tilework
  • Ceilings
  • HVAC

Magazine

  • Current Issue
  • Past Issues
  • Magazine Index
  • Subscribe
  • Online Archive
  • Author Guidelines

All Access

  • Member Home
  • Start Free Trial
  • Gift Membership

Online Learning

  • Courses
  • Project Guides
  • Reader Projects
  • Podcast

More

  • FHB Ambassadors
  • FHB House
  • Customer Support

Account

  • Log In
  • Join

Newsletter

Get home building tips, offers, and expert advice in your inbox

Signing you up...

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
See all newsletters
See all newsletters

Follow

  • X
  • YouTube
  • instagram
  • facebook
  • pinterest
  • Tiktok

Join All Access

Become a member and get instant access to thousands of videos, how-tos, tool reviews, and design features.

Start Your Free Trial

Subscribe

FHB Magazine

Start your subscription today and save up to 70%

Subscribe

We hope you’ve enjoyed your free articles. To keep reading, become a member today.

Get complete site access to expert advice, how-to videos, Code Check, and more, plus the print magazine.

Start your FREE trial

Already a member? Log in